
-Atl 9 THE~ PERFECTLY NATCHASLE SUBGARPI POLYTOPE OF N LA
ARBIT!RRY G!APH(U) CARNEGIE-MELLON UNIV PITTSBURGH PAMANRGENENT SCIENCES RESEAR E GALAS ET AL. RUG B7

1 UNCL SSIFIED MSRR-538 N 8 i4-85- - 6i9 F/6 12/2 UL

EEEEEEEEEEomhhE
IEEEmomoo



-

L-.

EIIIIg

- 1111

lul

i.

42.

4=%



•ICJILE GO

TE PERFECTLY MATCHABLE SUBGRAPH

CPOLYTOPE OF AN ARBITRARY GRAPH*

0'by

Ln Egon Balas

CO and

" C X \William R. PuUeyblank**

4 <

DT,

NOV 9 987

Graduate School of Industrial Administration
William Larimer Mellon, Founder
Pittsburgh, PA 15213-3890

' Carneg~ie

bS 

11pole 

.....

l ot "C x ]iits

- "..,,.-,, ..A



Management Sciences Research Report No. MSRR-538

-d

THE PERFECTLY MATCHABLE SUBGRAPH

POLYTOPE OF AN ARBITRARY GRAPH*

by

Egon Balas

and

William R. Pulleyblank z*

August 1987

The research of the first author was supported by Grant ECS-8601630 of
the National Science Foundation and Contract N00014-85-K-0198 with the

*U. S. Office of Naval Research. Reproduction in whole or in part is
permitted for any purpose of the U. S. Government.

•Pittsburgh, Pennsylvania 15213

p.

*Also issued as Report No. 87470-R, Institut f(ilr Okonometrie und
Operations Research, Nassestrasse 2, Bonn.

**Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Ontario, Canada. Supported by the joint research project
"Combinatorial Optimization" of the Natural Science and Engineering

SResearch Council Canada (NSERC) and the German Research Association
(Deutsche Forschungsgemeinschaft, SFB 303), plus an NSERC operating
grant.

N N' . -. . . . . .

I t.=osc.i~~



-- - - -- - -,WWW" V

F.""

ABSTRACT

The Perfectly Matchable Subgraph Polytope of a graph G = (V, E), denoted by

PMS(G) is the convex hull of the incidence vectors of those X C V which induce

a subgraph having a perfect matching. We describe a linear system whose solution

set is PMS(G), for a general (nonbipartite) graph G. We show how it can be derived
via a projection technique from Edmonds' characterization of the matching polytope

of G. We also show that this system can be deduced from the earlier bipartite case

[21, by using the Edmonds-Gallai structure theorem. Finally, we characterize which

inequalities are facet inducing for PMS(G), and hence essential.

1. Introduction.

* A matching in a graph G = (V, E) is a set M of edges such that each node
is incident with at most one member of M. Those nodes incident with members
of M are said to be iaturated by M. If all nodes are saturated by M, then M is
a perfect matching. We say that S C V induces a perfectly matchable subgraph
of G if the subgraph G[S] induced by S has a perfect matching. We let W
be the set of all such subsets of V, and adopt the convention that 0 E W, i.e.
the empty subgraph is perfectly matchable. The perfectly matchable subgraph
polytope of G, denoted by PMS(G), is the convex hull of the 0 - 1 incidence
vectors of the members of W.

In [21 we gave a set of inequalities sufficient to define PMS(G) for a bipartite

graph G. In this paper we give such a system for the general case when G may
be nonbipartite. We first show how a projection method described in [2] can be
used to obtain this system. We then describe how the earlier bipartite result,

together with the Edmonds-Gallal structure theorem can be used to give a
proof.

Optimizing over PMS(G) can be accomplished by solving a special case of
the weighted matching problem. For suppose we have a vector c = (c, : v E V)
of real node weights and we wish to find z E PMS(G) which maximizes cz,
or equivalently, S E W for which E(c: v E S) is maximum. We define
"-V = c,, + c. for every edge uv E E and then find a (not necessarily perfect)
matching M of G for which F(Z, : e E M) is maximized. The nodes saturated /
by M provide the solution. In fact, this relationship provides the basis for a
derivation of the linear description of PMS(G).

In the next section, we describe the projection method, based on Benders'
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2 The perfectly matchable subgraph polytope of an arbitrary graph

decomposition, which we introduced in [2]. We also show how it applies to
PMS(G) for a general graph G. In Section 3 we discuss the relationship of the
bipartite and nonbipartite theorems. In particular, we give a second derivation
of the general result, from the bipartite result, plus the Edmonds-Gallai struc-
ture theorem. In Section 4 we characetrize the facet inducing inequalities for
PMS(G), which enables us to give a minimal defining linear system. Then in

Section 5 we present some concluding remarks.

2. Projection and Cones.

First we describe a general projection method. Suppose we are given a
polyhedron

Z = {(u,z) :A'u + B'z = b= ,

- 2U + B 2 Z < b2

u 0,z E D}

where A',A 2,B 1 ,B 2 are matrices, bl,b 2 are vectors and D is a set to which
all feasible z belong. Let X denote the projection of Z onto the subspace of z
variables, that is,

X = {z : there exists u such that (u, z) E Z}.

We wish to obtain a linear system whose solution set is X.

We define the cone

W = {(y,z) yA' + zA 2 > 0, z > 0}.

Let VV be any (finite) set of generators of W. That is, we should have (y, z) E W

". .if and only if (y, z) can be expressed as a nonnegative linear combination of
'e.' members of W

Then
X = {z E D :(yB' + zB2)Z < ybl + zb 2  (2.1)

for all (y,z) e W1.

In fact (2.1) is quite easy to prove. First suppose y, z satisfy
yA 1 + zA 2 >0, z >0 and let (u,z) E Z. Then

yB'z + zBz < ybl + zb 2

- (yA' + zA 2 )u,

< yb' + zb2

-*
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E Baj,., W R. Pulleybl&nk

and hence z satisfies the linear system of (2.1). Conversely, suppose z X,
i.e., there exists no u > 0 such that

Au -b' - B'z

A2 u < b - Bz.

Then by Farkas' lemma there exists y and z satisfying

yA' + zA 2 > 0
S>0

y(b' - B1z) + Z(b2 - B 2 z) < 0. (2.2)

But then (y, z) E W and so there must be some member ( , ) of W which also
satisfies (2.2), i.e., ( B' + iB 2 )z > b' + Wb2 . Therefore z does not satisfy the
system (2.1).

In general, the main problem we have to solve is the following: Given a
cone W = {(y, z) : yA' + zA 2 > 0, z > 0}, find a finite set W of generators.
Such a set can be characterized as follows: First, let I be an index set for the
inequalities defining W. Let

w = {(y, z) yA' + zA = O, z = 0}.

The set W = is called the lineality space of W and consists of all those
w E W for which aw E W for all a E R. Let W be any basis of W = . (Note
that if W = consists of just the zero vector, then I= = 0.)

For any ( , i) E W we let I=( , i) be the set of indices in I for which the
corresponding inequalities hold as equations for ( ,2). (Then ( , i) E W = if
and only if (I-,i) = I.) Let R be the set of all maximal proper subsets J of
I such that J = I(g,2) for some ( ,i) E W. Then for any J E RZ, let r(J)
consist of all those (y, z) E W for which l(y, z) = J. The eztreme elements
of W are the members of r(J), for any J E R . Let WVV+ consist of one nonzero
member of r(J) for each J E . Then every member of W can be expressed as
a linear combination of members of = plus a nonnegative linear combination
of members of W + . Thus if we let W = "= U (-W = ) U W + we have a set of
generators as required.

If W = contains only the zero vector then W is a pointed cone. In this

case the sets r(J) each consist of all positive multiples of a single member of
W. These sets are called the eztreme rays of the cone W. (This is the case we
encounter here for nonbipartite graphs.)

Now we describe how projection can be used to obtain PMS(G) for a graph
G =(V, E). For any S C V we let 6(S) denote the coboundary of S, i.e., the

Z.



.. 4 The perfectly matchable subgraph polytope of an arbitrary graph

set of edges with exactly one end in S. We write b(t,) for 6({v }), for any t, -.
We let y(S) denote the set of edges having both ends in S. For any finite set J
and real vector (zj E J) and I C J we let x(l) denote N.(zj - I).

The matching polytope of G, denoted by M(G), is the convex hull of the
incidence vectors of the (not necessarily perfect) matchings of G. The following
gives a linear system sufficient to define M(G).

Theorem 2.1 (Edmonds [4]) For any graph G (V,E),
M (G) {u E R E

u(b(v)) < 1 for all v E V, (2.5)

u(-r(S)) !_ (ISI - 1)/2 for all S E Q} (2.6)

where Q = {S C V : ISI 3, odd}.

If G is bipartite, then the inequalities (2.6) can be omitted, and the result is
0 equivalent to the Birkhoff-von Neumann theorem which asserts that a doubly

stochastic matrix is a convex combination of permutation matrices. In this
. paper, our main subject of interest is the case of nonbipartite graphs. However,

most of the development remains valid, and considerably simpler, for bipartite
* graphs, when we take Q = 0. Generally we will omit pointing this out, however

we will indicate when differences arise.

Suppose we add a slack variable z, to each inequality (2.5) and then make
the substitution z. = 1 - 4'. Then we obtain the following:

Corollary 2.2: The polyhedron Z defined by the following linear system has
only integer vertices:

u >0,0< z <1;

u(b(v)) - z. = 0 for all v E V;
u(7(S)) _ (ISI - 1)/2 for all S E Q.

In fact, each vertex (u, z) of Z satisfies the following: u is the incidence vector
of a matching of G and z is the incidence vector of the vertices saturated by the
matching. Conversely, each such u, z defines a vertex of Z. Therefore PMS(G)
is simply the projection of Z onto the subspace of the z variables.

In order to apply the projection method of this section, we first identify
the various components of our linear system:

A1  is the node-edge incidence matrix of G;

B' is the negative of an identity matrix;

i4.-.
I ,.'.
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b' is a zero vector;

.42 has one row for each S e Q, and that row is the incidence vector of I(S);

B is zero;

" b2 has one entry for each S E Q having the value (JS1 - 1)/2.

* .Finally, D = {z :0 < x < 1}.

Our main object of attention is the cone W = {(y, z) : yA' + zA 2 > 0, z >
0}. That is, we assign a value y, to each i E V and a nonnegative value zs to
each S E Q such that

y, + yJ + Z(zs :i,j E S, SE Q) 0 for all?) E E.

Proposition 2.3: W is a pointed cone if and only if every component of G is

nonbipartite.

Proof W = is the set of all vectors of the form (y, 0) where y satisfies y, +y, = 0

,. for all ij E E. If a component has an odd cycle, then these equations imply

y, = 0 for all nodes i of this cycle, which in turn implies that y. = 0 for all i in
the nodeset of the component. If a component is bipartite, with bipartition of

the nodeset K, U K 2, then the vector ? defined by

(a foriEK1

= -a foriEK 2

10 for i K, U K2

is in the cone for all a. Therefore W= = {0} if and only if every component of

G is nonbipartite.

If G is not connected, then a linear system sufficient to define PMS(G) is
obtained by concatenating such systems for the various components. Hence we

can assume that G is connected. In this case, in principle, all we have to do is
, give a complete set of generators of W. If G is nonbipartite, this is equivalent to

-, describing the extreme rays of W. However, in fact we can do less than that for
there will be extreme rays of W which do not yield facet inducing (essential)

inequalities for PMS(G). Moreover, there will be distinct extreme rays which

yield the same facet inducing inequality for PMS(G).

Proposition 2.4: If G =(V, E) is connected and nonbipartite, then PMS(G)
is of full dimension.

." . ?j..



6 The perfectly matchable subgraph polytope of an arbitrary graph

Proof. We exhibit IVI + 1 members of PMS(G) which are affinely independent.

Let T be a spanning tree of G and let j be an edge which creates an odd cycle

when added to T. For each k E E(T) U {j} we define a vector zk E PMS(G) by

letting
k l if vE V is an end of k

z, = 0 ifv E V is not incident with k.

An easy inductive argument shows that these vectors are linearly independent.

Moreover, zk(V) = 2 for all k E E(T) U {j}. Hence the zero vector, which is

also in PMS(G) cannot be expressed as an affine combination of these vectors,

so these give the required set of IVI + 1 vectors.

A consequence of Proposition 2.4 is that when G is nonbipartite and

connected, the minimal defining linear system for PMS(G) is unique, up to

positive multiples of the inequalities. We say that two valid inequalities for

PMS(G) are equivalent if one is a positive multiple of the other. We already

have the inequalities 0 < z, < 1 in our defining system for PMS(G); they

made up the definition of D. We say that a valid inequality is trivial if it is

a positive multiple of one of these inequalities. Otherwise, we say that it is

nontrivial. Similarily, we call a facet of PMS(G) trivial if it is generated by a

trivial inequality and otherwise nontrivial.

In [2] we showed that if G = (V U V2,E) is bipartite and connected, then

PMS(G) is of dimension IV1 U V21 - 1. The unique (up to positive multiples)

equation satisfied by all members of PMS(G) is z(V) - z(V 2 ) = 0. In this

case two valid inequalities for PMS(G) are equivalent if one is obtained from

the other by multiplying by a positive constant and then adding an arbitrary

multiple of the equation z(Vi) - z(V 2 ) = 0. Again, trivial inequalities are those

equivalent to an inequality z, > 0 or z, < 1, for some v E V1 U V 2 .

Proposition 2.5. For any (y, z) E W, the inequality ax < ao is valid for

PMS(G), where a and ao are defined by

a -- y
(2.7)

ao - '(zs. (IS - 1)/2 S E Q).

Conversely, if a: < ao is a nontrivial facet inducing inequality for PMS(G),

then there ezists an eztreme (y,z) E W satisfying (2.7).

•' 4 . . . . . ° , . . .. • • . . , ° • . .
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Proof. Apply formulae (2.1) to the matrices B', B2 and vectors b,b 2 defined

above.

Note that there may be many extreme members of W (all having the same

y-component) which satisfy (2.7). They will all yield the same valid inequality
for PMS(G). What is important for us is the fact that the lefthand side of a
facet inducing inequality depends only on y and the righthand side depends

only on z.

We now describe a particular set of vectors of W which we will then show

are sufficient to generate all nontrivial facets of PMS(G). Let

T = {X C V : each component of G[X] has an

odd number of nodes}.

* For any A C V, we let L(A) denote the neighbour set of A. That is, L(A)

consists of those nodes not in A but adjacent to at least one member of A. For
any X E T and any a > 0 we define the following vectors:

-a ifvEXa if v E rX)

1-0 otherwise,

"2a if S E Q and G[S] is
zs = a component of G[X],

1.0 otherwise.

Note that, for X E T, there may be singleton components of G[X]. However,

zS > 0 only if ISI is odd and at least 3.

It is easy to verify that, for any X E T and any a > 0, the vector
(yX.", zX) E W. We now show that if ax < a is a nontrivial facet indu-
cing inequality for PMS(G), then there exists X E T and a > 0 such that
(yx",zX,') gives this inequality. Our proof makes use of the following two

notions. A family F of subsets of V is said to be nested if, for any S, T E F,
whenever S n T : 0, either S C T or T C S. If F is a nested family of sets,
then we let G x .F denote the graph obtained from G by shrinking the maximal

members of F to form pieudonodes. For any S E F, we let F[S] denote the
subfamily of F consisting of all members of F properly contained in S. Thus
G[S] x F[S] is the graph obtained from G[S], the subgraph of G induced by S,

_ i, ° •

V0
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, . The perfectly matchable 'ubgraph polytope of an arbitrary graph

by shrinking all maximal members of F properly contained in S. See Figure .

Note that G[S] x -FSI can have multiple edges, whether or not G has multiple

edges. However, shrinking cannot create loops, as such edges disappear in the

shrinking process.

/ \

C/ '-'

/ '/ / ,

:!:::: x ,

S K _..' nodesets belonging to nested family . "

GC

. pstudonodes

Figure 1. Nested family and shrinking

Theorem 2.6 Let az < ao be a nontrivial facet inducing inequality for

PMS(G), for a connected graph . Then there exists X E T and a > 0 such

*.. that
a. = yX", for all V E V,

ao = E( 0.(IS - 1)/2:S E Q).

" X 'a
Moreover, the sets S E Q such that zs > 0 are disjoint, and for each

j•s. such S, G[S1 is connected and nonbipartite.

Proof. By Proposition 2.5, there exists extreme (y, z) E W such that a and ao

are given by (2.7). For any z = (zs : S E Q) we let Z(z) = Z,(zs. (IS[ - 1)/2:

S E Q). We establish four claims:

. Claim 1.For any (y',z') E W jatUjfying y' > y, we must have

Z(z) - Z(z') < y'(V) - y(V). If y' 0 y, then this inequality is strict.

A For let a'z < a' be the valid inequality for PMS(G) corresponding to

(y', z'), defined by (2.7). If for each v E V, we add (y -y,) times the inequality

.~ ,d1

-4P
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1, we obtain ax " 1  - P , ' :, SiiC" ,: : :> ""t

we must have a' - ' - y(,') -a .If ' 1Z. t.t1:i >ince a: I Iluce A

nontrivial facet. and we have obtained it from an,:ther :utity )y i>2l a

positive multiple of z, < 1 ;ur at least one v - , we nu.t have

V , -i a0. For otherwise we would have expressed a facet ind',cmn :'; ,

is a nonnegative combination of other valid, nonequivae],nt inequaliti.

Claim 2. We can assume that Q' -{S zz u > ) a 71e. d '2'.

For suppose Iy, E IVW satisfying 1'2.7 is ,hosen iuc i tat "" .s
S) is mammized. (Since Z(z) = ao, and n his ax-inu: ,,:Y

Suppose there exists 5, T Q' such that S - T -:t ,it T P a,: I .

Assume zs <- ZT.

First suppose S T is even. Define y',? as follows:

if v S T

{y - zs if t, S T;

zw -zs if V S',.Tor 1 ' 'S,
ZT zs if W T

W-if IV-S

..:.. zw if W E Q\{S, T. S, T, T' S.

For any edge uv, we have yu,-Y, + ( T :V > C )_ y,,-y, -(zw:tt

so y',z') E W. Moreover y' > y, y' 6 y. But

Z(Z) - Z(Z')

=Zs .{('S - 1)/2 -- (JTI - 1)/2} - zs{( SXT - 1). 2 ' (TS' - 1 2}

Zs sS T =y'(V) -y(V),

which contradicts Claim 1.

Therfore, !S T' must be odd. Define z' as follows:

z-v -zs if W = S' Tor S T,
ZT ZS if W = T
0 if IV = S

zw if W Q \{S,T, S T, S T}.

A gain, (y, z') I V and Z(z) = Z(z'). Therefore (y,z') satisfies '2.7). hut

W..Q(ZW W 2 ) < QwZ( I w 2z), a contradiction to our choice of i , z
which establishes ClIm 2.

-U..

".
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" E.

Clain 3. Let S I 2,d:et; ';'

mIntrted 2-d ] z.i %onbipartite

First we show tihat (;= S is con:iec:,-i. If ,t t :. L. * .-

with an .odo number of nodes, let A )e :e ': .

" " hIen : •] D-Ile ,:,. ' bv-, -rn,, zn5 .- _ :f, .5 ,

, { .. --a i. if ,V -

"v A if t'= A
Zw otherwise.

Then ' - = V A S' K and Z, -

- \,. 5-,K K) iASK. But since y > 9 and y' = y, this ,con:r :.

Now suppose that G is bipartite wit h bipartition V, -~ V71) where V: 'Kt
We define the following: R, is the set of real nodes in V1, P is the set

>,oudonodes of V,' and P is the set of real nodes contained in nodes of j:

R, P2 and P, are defined analogously for V2. Let

m min( { zw IW is a set of real nodes forming a node of P }

- , - -- V ZW I Q;u,v W) uv EG),U,v P R,}

. IDefine y', Z by

1' i,, otherwise;

-Azw - if IV is the set of nodes shrunk to

J form a node of P2,

W zw - if I is the set of nodes shrunk to
form a node of P or if W S,

Z I w otherwise.

0.4
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See Figure 2.

I';

0 o o o v2

0 0

0 0

-A)t
a R+

o a,

P,

Figure 2

First, our choice of A ensures that (y',z') E W, moreover y' > y and

Y'(V)-y(V) = A-IR1UPil. But Z(z)-Z(z') = A(IP1I-IP1I-IPI+IP2!+ISI-1)
and since ISI = IRII+IPI+R 2 1+IP 2 we have Z(z)-Z(z') = A(21Pil+21RIl-
IRiI-IPI+IP21+IR 21-1) = A (IiI +IRlI)+ 4(IVj2 -IVil-1). Since ISI is odd
and IVl IV21, we must have IV 2-IV I-1 > , so Z(z)-Z(z') > y'(V)-y(V)
which contradicts Claim 1, since V #0 implies y' # y.

Claim 4. For all S, T E Q',Sf7T = . For any S E Q', for ally V S, Y = zs.

For any S E Q', we let s = (zw : W E Q', W D S). Let S be a

minimal member of Q'. By Claim 3, G=[S] is nonbipartite and connected. By

considering the nodes belonging to an odd cycle of G= [S] we see that we must

have Y. = - ps for all nodes v of this cycle, and so, since G=[S] is connected,

,= -ps for all v E S. (2.8)

If there are nondisjoint members of Q', then since it is a nested family, we
can choose a set T E Q' which is not minimal in Q', but all members of Q'

contained in T are minimal. Let S be a member of Q' properly contained in 2'.

Let v E S.

By (2.8), we have y. = -(pT + zs). Now consider the graph G = G[TI x

*,,,'

04
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12 The perfectly matchable subgraph polytope of an arbitrary graph

Q'[T]. By (2.8), for any nodes u, w belonging to the same pseudonode W of G,
we have y,, = YW - - p . Since G is connected, it is an easy inductive exercise

to show that, for each node u E T, we either have y, - - (PT + zs) if u or the

pseudonode containing it is at an even distance from S in G or y, = - (pT-zs)

if this distance is odd. Moreover, each edge of Z joins nodes having different

values. But this then implies that G is bipartite, which contradicts Claim 3.

Hence all members of Q' are disjoint, which together with (2.8) establishes the

claim.

(Note that if G is bipartite, then Q = = 0 and so Claims 2, 3 and 4 are

vacuous.)

Now it is easy to complete the proof of Theorem 2.6. Let V + , V- and V °

be the sets of nodes v where y,, > 0, y,, < 0 and y, = 0, respectively.

Since z > 0 we see the following:

(i) No edge uv E E can join two nodes of V- unless they belong to the

same S E Q and zs > 0, (or else we would contradict feasibility).

(ii) (V-) C V + .

(iii) E= C : u vQ}UI u -eu-y(V).

But now if we let X = V- and a = a0 and consider the vectors y and zx ' ,
we see that they give a member of W for which we have equality in (iii) above.

But since (y, z) generates an extreme ray of W, the set of inequalities defining

W which hold as equations must be maximal, so we must have had, in fact,

y = yXc and z = zX 'O and the proof is complete.

p.

We can now combine Proposition 2.5 and Theorem 2.6 to obtain the fol-

*lowing system sufficient to define PMS(G) for a general graph G = (V, E). For

any S C V, we let (S) be the number of connected components of G[S].

Theorem 2.7. For any graph G = (V, E),

PMS(G) {z E Rv:

.-'. 0<z<l

X(S)-zr.s)) ) I-K(S) (2.10)
for all S C V such that every component of

Vi
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.tGS1 consists of either a single node or else

Is a nonbipartite graph with an odd number of nodcs}.

We conclude this section with two remarks. First, it is not true that every

- extreme ray of W has the form (yX"zX') for some X E T and a > 0.

Consider the graph of Figure 3.

?.5

~Figure 3.

~We let =-I for all nodes v {b, f}1, and let )b = !=1. We let )s =0

for all S E Q\{{c,g, d},{g, d, ell and define ys = 2 for these two triangles.

Note that we have equality in the constraints defining W for every edge except

gd. It is easy to check that ( , 1.) is the unique member of W, up to nonnegative

.... multiples, which satisfies this and has )s = 0 for all S E Q\{{c, g, dl, {g, d, el}}

.-,:and so generates an extreme ray of W. However, the valid inequality for PMS(G)
~obtained from ( , i) by Proposition 2.5 is

-".'. z ~X + X , + Z d + Z g + z , -z _ 4 (2 .9 )

£.,:If we let S = c, g, d, al, then we obtain the following inequality from Theorem
.9.7:

X, + X,+ Xg+ Zd -bX-Z!- <2.

' :':If we add twice the valid inequality x, < 1 to this, we obtain (2.9), so this is

' )an example of an extreme ray of W generating a valid, but non- facet-i1nduci ng
'.nequality for PMS(G).

V..

O0

1''".•.- -- ':';-.""-;" ;"-'-""' - -", ", ", - - "" -:e ,? '' 2;,:.:d ',ZZ5 ;
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Second, we note that it is easy to deduce Tutte's theorem [8] characterizing

those graphs which have perfect matchings from Theorem 2.7. For Theorem

2.7 implies that G has a perfect matching if and only if the vector i obtained

by defining ;i = 1 for all v E V satisfies our linear system. But this holds if

and only if (S)i _> K(S) for all S E T. So if G has no perfect matching, then

there exists a set X C V such that G\X has more than IXI odd components -

which is the "hard" direction of Tutte's theorem.

3. Relationship to the Bipartite Case.

In [2] we showed that the following linear system is sufficient to define
PMS(G) for a bipartite graph G = (V U V2, E):

PMS(G) = {z E ]RVIIV2:

-'" O<z<l,

z(s) - z(1(s)) <0 0 for all S C v1,

Z(VI) - Z(V2) = 0}.

We can deduce this result easily from Theorem 2.7. Applying Theorem 2.7 to

G, we obtain an inequality (2.10) for every S C V such that S is independent,
i.e., no two members are adjacent. This inequality will be z(S) - z(r(S)) < 0.
Combining the inequalities corresponding to V and V2 we obtain the equa-

tion z(VI) - z(V) = 0. With this equation, it is straightforward to deduce

the inequality z(S) - z(IF(S)) _< 0 for independent sets S % V from those
corresponding to S C V. (See [2] for details.)

What is more surprising is that we can deduce Theorem 2.7 from the bi-

partite result, plus the so-called Edmonds-Gallai structure theorem. (Anderson

[1] used an argument with a similar structure to derive Tutte's Theorem from
Hall's Theorem, which characterizes those bipartite graphs having perfect mat-
chings.)

The derivation of the nonbipartite result is easier if we use the following
minor extension of the bipartite theorem. Let G = (V U V2 , E) be a bipartite
graph. We say that W C V1 U V2 is V -matchable if there is a matching of G[W]

'.

%I
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which saturates all nodes of W n V1. In other words, W consists of a set U such

that G[U] has a perfect matching plus, possibly, some additional nodes of V2.

Theorem 3.1. For a bipartite graph G = (V1 U V2, E), the convex hull of

the incidence vectors of the V1-matchable subsets of V U V2 is given by
~O_<z___

z(s) - x(r(s)) _0 0 for all S C V1 .

Note that the only change from the defining linear system for PMS(G) is that

the equation has been removed, leaving only the inequality z(V1) - z(V 2 ) _< 0.

This result is derived in [2] as a special case of lattice polyhedra. It can

also be easily deduced using the projection method of [2]. Or, it can be deduced
directly from the characterization of PMS(G) as follows: Construct a bipartite

graph G' by adding a new node w(v) and a new edge joining v and w(v) for each
v E V2. Let W be the set of these new nodes and for S C V2, let w(S) = {w(v) :

* v E S}. There is a 1:1 relationship between perfectly matchable subgraphs of

G' and V1-matchable sets of nodes in G. By using the characterization in [2] of
the minimal linear system necessary to define PMS(G'), we obtain

PMS(G') = {(z,y) E Rvtuv2uw such that

.(s) + y(w(r(s))) - x(r(s)) < 0 for all S C 1,

z(V) + X(W) - z(V 2 ) = 0}.

But now we can use Fourier-Motzkin elimination to eliminate the y variables.

This is particularly simple, since each variable y, only occurs in a single inequa-

lity ay 5 a with a negative coefficient, namely -y, <0 . Hence, all we need to

do is eliminate these variables from all Inequalities where they appear with a

positive coefficient, which gives the result.

* A graph G = (V, E) is called critical, (or hypomatchable) if, for every
v E V, G\{v} has a perfect matching. A matching which saturates all nodes

but one of G is called a near perfect matching. A critical graph is nonbipartite,

and has an odd number of nodes. The Edmonds-Gallai partition of a graph

G = (V, E) is the partition of V into O(G) U I(G) U P(G) defined by

O(G) = {v E V: some maximum matching of G leaves v unsaturated};

I(G) = rCO(G));

P(G) = V\(I(G) U O(G)).

• ".-
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Note that every maximum matching saturates all nodes of I(G) U P(G),
and if G has a perfect matching then P(G) = V and I(G) = 0(G) 0

Theorem 3.2 (Edinonds-Gallai Theorem, see LovAsz and Plummer [6] § 3.2):

.1~* For any graph G,

i) every component of 0(G) is critical;

ii) a matching Mis maximum if and only if

a) M induces a perfect matching of G[P(G)];

b) each node in I(G) is joined by an edge of M to a node of a distinct

cornponent of G[0(G)];

c) M induces a near perfect matching on each component of G[0(G)1.

If Edxnonds' maximum matching algorithm [51 is applied to G, it determines
the Edmonds-Gallai partition in polynomial time.

Let c =(c. v E V) be a vector of node costs. We consider here the linear
program

maximize cz

subject to 0 < z < 1,

x(s) - z(r(s)) :5 ISI - r.c(S) for S E T. (3.1)

(Recall that T = {S C V: every component of G[S] has an odd number of
nodes }.)

The dual linear program is the following:

minimize V(V) + EZ(ZS -(Is I + K.(S)) :S E T)

subject to y, z 0,

y. +Z(zs : S ET, vE S)-- Z(zs : SET, tyE r(s)) !c, (3.2)

for alv E V.

We will show that for any vector c of node costs these linear programs have
feasible solutions z* and y*, z*, giving identical objective values ard such that

up%

~ .7... S * S&I
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z* is 0 - 1 valued. Since the 0 - 1 valued solutions to (3.1) are precisely ihe

incidence vectors of members of W, this will show that PMS(G)= {z E R"

0 <z < 1 and z(S) - z(1(S)) _< ISI - z(S) for all S E T}. Then all we need

to show to obtain Theorem 2.7 is that constraints (3.1) for S E T such that

G[S] has nonsingelton bipartite components are redundant. But this is easy

for suppose K is such a component of G[S], for S E T. Let K1 and K 2 be the

nodesets of the two parts of K, where IKI > I K21 and let S' = S\K2. (Each

node of K 1 is a singleton in G[S'].) The constraint (3.1) corresponding to S

is implied by the sum of the constraint (3.1) corresponding to S', plus twice

the sum of the constraints z, < 1 for v E K 2 , plus the sum of the constraints

-z. < 0 for v E r(s)\(s').

The following is an outline of how we obtain y*, z* and z'. First we consider

the graph G' induced by the nodes with nonnegative costs. If this graph has

a matching which saturates all nodes with positive costs we construct y* and

z* trivialy. If not, we apply the Edmonds-Gallai theorem and construct a

bipartite graph with a node for each component of O(G') and a node for each

neighbour in G of a node in O(G'). We define appropriate node costs, then

we use Theorem 3.1 to obtain primal and dual solutions which we then use to

construct the desired z*, y,, z*.

Now we describe the details. Let W {v E V c, > 0}. If G[W] has

a matching M which saturates all nodes for which c, > 0, then let z* be the

incidence vector of the set of nodes saturated by M, let y: = maz{0, c,} for all

v E V and let z" = 0. These vectors are feasible and since cz = y*(V), they

are optimal. (This includes the case W = 0.)

If no such M exists, then W # 0 and we define a bipartite graph G =

(V1 UV2,E) based on the Edmonds-Gallai partition of G' = G[W]. Let K(O(G'))

be the set of nodesets of the components of O(G'). Construct a node v(K) E V

for each K E K(O(G')). Construct a node U E V2 for each node v of G (not G'
!) which is adjacent in G to a node of O(G'). Join v(K) E V and U E V2 in G if

"* -- "there is an edge of G joining v to a node w E K. Note that G is isomorphic to

.' the graph obtained from G[O(G') U r(O(G'))] by shrinking all components of

O(G') to pseudonodes and deleting all edges with both ends in r(o(G')). See

Figure 4.

[le, -4

I- . . .



- The. I U- p rfetl fltch b sub rap pu-tp o n ar blt- - - - -ap

VV

P(GG')

4*24

Figur 4.Dfniino

Fo ( )EVltZ(K i,,,:WEK . o 2lt = ,

ThnZ o l , n 7hsamthn wihstrtsalUEV

fo wic 0 (~e al U V sc htvEW ypoet i )o h
Edod-Gla Term

NoltV eaV-athbesbe fV Vfrwih1 X )i

maiu ,adsbettotiC's)aia.ThnX ut nld l

Then~,, 0forallv EV 1  nd has apefc matching.wihstrtsal~EV

for hich~ 0, (~e.all Y EV 2 sch hat E ) byproert i )o hEdmonds-Ala Thorm



E. B&aa, W.R. Pulleyblank 19

For let M be a maximum cardinality matching of G[X1]. Since X ° is V1i-

matchable, all nodes of V U X* are saturated. Suppose that E V2 n X

is not saturated. If Z < 0, then Z(X*\{J}) > Z(X*), a contradiction. So we

must have > _ 0. Let M' be obtained from M by deleting any edges incident

with nodes i E V2 having i. < 0.

Then M'AM (where A denotes the symmetric difference) will include a

path P which joins T to some u E V such that the edges of P are alternating

in M and M', and u is unsaturated by M'. Let M be obtained from MAP by

removing the edge of M from u to iY E V2 , if such an edge exists. Let X be

the set of nodes saturated by M;/. Then either we have Z(X) > Z(X*) or else
i(X) = (Xo) and ±) D X*, in either case a contradiction to our choice of X*.

Let , 5 be an optimal solution to the problem dual to maximizing z

subject to the constraints of Theorem 3.1, for G,Z. Then

*V 1 u V2 ) = Z(X), (3.3)

g.y > 0, (3.4)

+ (s:v E S C V) , for all v E V1, (3.5)

-- Z ( S:U Er(S), c: V) > for all UE V2. (3.6)

We need one additional fact. Since Z, > 0 for all v E V1, we can require
(3.5) to hold with equality for all v E V1. For suppose y,+Z-(zs : v E S C Vi) >

C' > 0, for some v E V1. Minimality of g(V UV2) implies that 0. Therefore

there exists -S C -V such that v E S and 9- > 0. Let o, = min{-s, i, - '(-s :

. v E S C V1)}. We obtain a new feasible dual solution by lowering ig by o, and

raising \ by o. Repeating this we will have

S+ Z(s : v E S C Vi) = Z, for all v E V. (3.7)

Now we construct the desired z" as follows: For each K E A(O(G')),

choose a node UK for which c.K is minimum. Let

1 if v E P(G')
- ., or v E r(O(G')) andU E X"

._ I =or v E K E K(O(G')), unless

V = UK and v(K) X*
0 otherwise.

10t
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20 The perfectly matchable subgraph polytope of an arbitrary graph

It follows from the fact that G[X ] has a perfect matching plus the Edmonds-

Gallai theorem that z" is feasible. Moreover,

cz" = c(P(G')) + Z(X*) + c(O(G')) - E(c : K E A.(O(G'))). (3.8)

Now we construct the desired y*,z* as follows: For S C V1, let K(S) _

O(G') be the union of all those K E ,(O(G')) for which v(K) E S. Let

c, if v E P(G'),

. +(K)+ C,- Cu if v EKE C(O(G')),

y V y'- if v E r(O(a')),0 otherwise;

z- is if T = K(S) for S c V1,
T. 0 otherwise.

Feasibility of y, z* follows from the construction of , , and (3.4) - (3.6).

Moreover,

y (V) + Z z(T - r(T))
TET

= c(P(G')) + z {IKK(,,(K) - cu,) + c(K)}

KEI(O(G'))

.':--+ v(V) + (IKI - 1) E(-is: v(K) E S)

KE.(O(G'))

=c(P(G')) + E (IKI - 1){W,(K) + 1_ (is :v(K) E S) <K)

KEI(O(G')) SCV,

+ c(O(G')) + g(V U V,)- Z(c,,: K E AC(O(G')).

Therefore by (3.3), (3.7) and (3.8), we have

y*(V) + E zr(TJ - ,.(T)) =cz
TET

which establishes the optimality of z,Zyz" and completes the proof.

*4.. [

w*J'.
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4. Facets of PMS(G).

In this section we characterize those inequalities which induce facets of

PMS(G). For the trivial inequalities the situation is particularly simple. If G is

nonbipartite, then the inequality z, > 0 is facet inducing unless v is adjacent

to a degree one node w, in which case the inequality is obtained by adding the

inequality -z, < 0 to the inequality (2.10), taking S = {w}. The inequality

z, < 1 is facet inducing unless w is a degree one node (in which case it is implied

by the inequality (2.10) with S = {w} plus z , < 1, where v is the neighbour) or

G = (V, E) is a triangle (when it is obtained by adding the inequalities (2.-0)

for S = V and S = {w}). The proofs are easy and we leave the details to the

reader. The bipartite case is treated in [2].

The main interest is in characterizing those inequalities (2.10) which induce

facets, which we do for general (bipartite or nonbipartite) graphs. We make use

* of two lemmas. The first follows easily from Tutte's theorem, we give its proof

for the sake of completeness.

Lemma 4.1(cf. Pulleyblank and Edmonds [7]) If G = (VE) is not critical

but IVI is odd, then there ezists X C V such that every component of G[V\X]
is critical, there are at lewt JXJ + 1 such components and every node in X is

adjacent to a node in V\X.

Proof. We use induction of the size of G. If G is not critical, then there

exists v E V such that G\{v} has no perfect matching. By Tutte's theorem,
there exists X' C V\{v} such that G[V\(X' U {v})] has at least IX'I + 2 odd

components. Choose such an X' for which the number of odd components of

G' = G[V\(X'U {v})] is maximum. If r({v}) _ X', then let X = X', other-
wise, let X = X' U {v}. In either case, G' has at least IXI + 1 odd components.
If a component K of G' had an even number of nodes, then adding an arbitrary

node of K to X' would contradict the maximality property of G'. If any node

of X' is adjacent only to nodes of X' then we can remove this node and again

contradict the maximality of G'. Finally, if some odd components K of G' is
not critical, then by induction there exists X C V(K) satisfying the conditions

of the lemma. Again, X' U X contradicts the maximality property of G'.

.c t

?-': The second lemma characterizes those sets T W which satisfy (2.10)

1-'.
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22 The perfectly matchable subgraph polytope of an arbitrary graph

- .with equality for a given S E T. (Recall that W is the family of subsets of

nodes saturated by some matching of G.)

4.: Lemma 4.2. Let S E T and let T be the set of nodes saturated by some matching

of G. Then the incidence vector .of T satisfies

i(s) - igr(s)) =Isi - x(S)

if and only if

(4.1) for each component K of G[S], T contains all but possibly one node of

K,

(4.2) there ezists a perfect matching of G[T] which joins each node of T n F(S)
,- to a node of a distinct component K of G[S] for which V(K) C T.

* ' Proof. Let M be a perfect matching of G[T]. For each component K of G[S],

let MK be the set of edges of M with both ends in K. Let M, be the set of

edges of M which join nodes of S to nodes of F(S) and let M 2 be the set of
edges of M which join nodes of r(S) to nodes not inS. For each component K
of G[S], 21MKI 1V(K)I - 1, so if i is the incidence vector of T, then

i(S) - z(r(S)) < -(21MKI K is a component of G[S])

+ IMiI - IMII- IM21

E(IV(K) - 1: K is a component of G[S])

=ISt- x(S).

" . Therefore we have equality if and only if M 2 = 0 and 2IMKI -IV(K)l - 1

for every component K of G[S], i.e., if and only if (4.1) and (4.2) hold.

Theorem 4.2 Let G be nonbipartite. For S E T, the inequality (2.10,, is

.. facet in du cing for PMS(G) it and only if

(4.3) every component of G[S] is critical;

(.)every component ofG (S s))) isnonbipartite;
.4
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(4.5) the graph obtained from G[SuL F(S)] by deleting all edges with both ends

in F(S) is connected.

Proof. We first show the necessity of our conditions. If (4.5) is violated, then

the inequality (2.10) corresponding to S can be deduced by adding the inequa-

lities corresponding to S n V(K) for all components K of G[S u F(S)].

Suppose (4.4) is violated and G[V\(S u F(S))] has a bipartite component

K. Let K1 and K 2 be the nodesets of the parts. Adding the inequalities (2.10)

corresponding to SUK 1 and SUK 2 gives us exactly twice the inequality (2.10),

so the inequality is redundant.

Suppose (4.3) is violated. If a component K of G[S] is not critical then

we apply Lemma 4.1 to find X C V(K) such that every component of K\X
is critical, there are at least JX] + 1 such components and F(V(K)\X) = X.
Let S' = S\X. Then F(S') g F(S) U X and x(S') > tc(S)- 1 + [X[, i.e.,

* (S') > r(S) + [Xl. To the inequality (2.10) corresponding to S, we add twice
the inequality z,, < 1 for all v E X. This yields an inequality which implies

* x(S) - z(I(S)) _ IS'I - ,.(S') + 21X[ _ [SI - (S). Hence the inequality (2.10)

corresponding to S was redundant.

Now we prove the sufficiency. Suppose that (4.3) - (4.5) hold. We show that

the inequality (2.10) is facet inducing by showing that for each other inequality
ax < a used to define PMS(G), we can find i E PMS(G) satisfying ai < a but

i(S) - (r(S)) = [SI - x(S). For then if we take a positive convex combination

of these points, we obtain z* E PMS(G) for which the only tight inequality is

(2.10). For c > 0, (1 + c)z violates (2.10), so this point is not in PMS(G).

But for c sufficiently small, this is the only violated inequality, so it is facet

inducing.

By (4.3), for each component K of G[S] we can choose an arbitrary node
VK of K and construct a perfect matching of K\{VK}. If we do this for all com-

- ponents, the set T of saturated nodes satisfies (4.1) and (4.2) so the incidence

vector zT satisfies (2.10) with equality. Now we consider the three types of

inequalities:

Case 1. z, < 1 for v E V. For any node v, by choosing an appropriate T as
above we have zT = 0, i.e., X T < 1, as required.

Case 2. z, > 0 for v E V. Choose 2 as above such that for each component

@4% N"%
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K of GfSl, the node of K not in T is adjacent to a node of F(S). For v E S,

if v E T then let T = T. If v E S\T, then let u be an adjacent node of v in

F(S) and let T = T u {u,v}. If v E F(S), then let w be a node of S\T in a

component of G[S] containing a node adjacent to v and let T = T U {v,w}.

Finally, if v E V\(S U F(S)), then by (4.4) there exists w E V\(S U F(S)) such

that v and w are adjacent. Let T = T U {v,w}. In every case, there exists

a perfect matching of G[T] and the incidence vector zT satisfies z > 0 and

. T (S) - zT(r(S)) = IS- C(S).

Case 3. z(U) -z(F(U)) [/-x(U) for some U E T\{S}. Suppose that every

i E PMS(G) which satisfies (2.10) with equality also satisfies (U)- g(F(U)) =

jUI - ic(U). If G[S] has any component K with more than one node, then by

considering T as above which leaves each node of K in turn unsaturated, we see

that either V(K) g U, V(K) g F(U) or V(K) n (U u F(U)) = 0. Suppose that

some component K of G[U] having three or more nodes were not contained in

* S. We could take any T as above for S, and its incidence vector i would satisfy

.(U) - (F(U)) < jUl - tc(U), by Lemma 4.2. Therefore

-4 .6 ) every nontrivial component of G[U] is contained in G[S].

Suppose W U\S # 0. By (4.6), W is an independent set of nodes. If

any nodes of F(W)\r(S) were adjacent, or adjacent to a node not in F(S) U W,

we could start with any T as above for S, then add such an adjacent pair of
nodes and the incidence vector i would satisfy (2.10) for S, but not for U.

Therefore G[W U (r(w)\r(S)] is a bipartite component (or a collection of such

components) of G\(S U F(S)), which contradicts (4.4). Therefore

(4.7) U C S, and hence F(U) C F(S).

Finally, suppose there exists w E S\U. Choose such a w adjacent to a node
u of F(U), which is possible by (4.5). Then if we take T, as above, together

with u and w, the incidence vector again satisfies (2.10) for U but not S as

required.

For a case of a bipartite graph G = (V1 U V2, E), we showed in [2] that,

for any S C V1, the inequality z(S) - z(F(S)) < 0 was facet inducing if and

only if both G[S U F(S)] and G[(V\S) U (V2\F(S))] were connected. Since in

the bipartite case, every z E PMS(G) satisfies the equation z(V) - z(V) = 0,
we see that any facet is induced by several different inequalities of the form

:.-p
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(2.10). In particular, suppose that S is some subset of V1 U V2; let S = Sf nvi
and S 2 = S n V2. Then (4.3) holds if and only if no edge joins two nodes of S

and (4.4) holds if and only if every node is in S U 1(S). If either G[S 1 u 1(Si)
or G[S 2 U r(s2)1 were not connected, then (4.5) would be violated. However,

-"-" connectivity of G requires there to be edges present joining nodes of r(S 1 ) to

nodes of r(s 2) and if we delete them, then the graph is no longer connected.

Thus it is true that for a bipartite graph G, every facet of PMS(G) induced by

an inequality (2.10), is induced by such an inequality for S such that no edge

joins two nodes of S, every node belongs to S U r(S) and the graph obtained

by deleting all edges with both ends in r(s) has exactly two components. For

by adding the equation z(V) - z(V) = 0 to such an inequality we obtain
z(Si) - z(r(si)) < 0 for S 9 V1, satisfying the conditions in [2]. In other

'2. words, Theorem 4.2 is also valid for bipartite graphs. It is also easy to modify
the proof of this theorem to obtair this directly.

Conclusions.

In [21*e introduced a technique for obtaining a linear system sufficient to
define a combinatorial polyhedron P from a defining linear system for a larger

polyhedron Q such that P is a projection of Q. In this paper we give another,
more complex, application of this method. The method consists of finding a set

of generators for a particular cone and then "post multiplying" the generators

to obtain the defining inequalities. In the case of perfectly matchable subgraph

polyhedron of general graphs, we did not describe a complete set of generators
of the relevant cone. However we did describe a set of generators sufficient to
produce all facet inducing inequalities. Thus one important point illustrated

here is that it is not essential to have a complete set of generators of the cone,

in order to obtain the desired projection.

We also discussed the relationship of the nonbipartite result to the earlier
bipartite theorem [2]. In particular we showed that the bipartite theorem, plus

the Edmonds-Gallai structure theorem are sufficient to deduce the nonbipartite
result.

An interesting related problem is the so-called separation problem for

PMS(G): Given a vector t e Rv, either show that : E PMS(G) (by provi-

ding a set of vertices of PMS(G), of which it is a convex combination) or else
show that it is not, by giving an inequality ax < a valid for all z E PMS(G),
but such that ai > a. This problem was solved by W.H. Cunningham and J.
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26 The perfectly matchable subgraph polytope of an arbitrary graph

Green-Krotki [3] as a special case of the problem of determining whether there
= exists a (usually fractional) vector z belonging to the matching polyhedron

M(G) such that z(6(v)) lies between prescribed bounds, for all nodes v. Their

results also provide another proof of Theorem 2.7.
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The Perfectly Matchable Subgraph Polytope of a graph G=(V,E), denoted by
IPMS(G) is the convex hull of the incidence vec'tors of the X 2 V which induce
a subgraph having a perfect matching. We--4e.rib a linear system whose solu-

Stion set is PMS(G), for a general (nonbipartite) graph G. We--Je how. it can
% ' be derived via a projection technique from Edmonds' characterization of the

I matching polytope of G. We-a-J &haw that this system can be deduced from the
earlier bipartite case -2f, by using the Edmonds-Gallai structure theorem.
Finally, we charecterize whicb inequalities.ar-a fce induciag.for PMS(G), and,
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